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The delusive accuracy of global
irrigation water withdrawal
estimates
Arnald Puy 1,2✉, Razi Sheikholeslami3,4, Hoshin V. Gupta5, Jim W. Hall 3,

Bruce Lankford 6, Samuele Lo Piano7, Jonas Meier8, Florian Pappenberger 9,

Amilcare Porporato 10, Giulia Vico 11 & Andrea Saltelli 2,12

Miscalculating the volumes of water withdrawn for irrigation, the largest con-
sumer of freshwater in the world, jeopardizes sustainable water management.
Hydrological models quantify water withdrawals, but their estimates are unduly
precise. Model imperfections need to be appreciated to avoid policy
misjudgements.

Humans intervene heavily in the global water cycle. The greatest impacts are related to irrigated
agriculture, the largest consumer of freshwater resources and a key asset towards food security
due to its capacity to maximize crop yields. In the future, irrigation will consume even more
water not only to meet the food demands of a growing population, but also to compensate for
higher evapotranspiration rates due to climate change.

Quantification of catchment water budgets is thus fundamental to sustainably manage agri-
cultural water resources. Since the late 1980s, when the global scale of water risks became
increasingly recognized, policies for sustainable water management have been informed by large-
scale hydrological models, which simulate the Earth’s water cycle and quantify the dynamic
distribution of terrestrial water resources. The estimates produced by these models have strong
policy implications as they feed into the World Water Development Reports, Global Environ-
mental Outlooks and several studies commissioned by the World Bank1, in turn shaping local
and basin water policies.

Here we argue that the Irrigation Water Withdrawal (IWW) estimates produced by large-scale
hydrological models are unreliable. They disregard uncertainties in key parameters and exclude
legitimate conceptions of irrigation that do not easily fit within the normative agronomist or
engineering mindset, such as that of local and traditional irrigators. This can lead to policy mis-
judgements and cause social and environmental harm on a vast scale. For example, in 2016, the
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African Risk Capacity model left ca. six million people in Malawi
without water insurance payouts after miscalculating the size of the
drought-affected population by more than two orders of magnitude.
A later audit revealed that the model used a long-cycle maize variety
as reference crop instead of the short-maturing varieties prioritized
by Malawian farmers, and that it overlooked the timing between dry
spells and the crops’ growth cycle2. We contend that a similar
disservice can be done to society in its pursuit of the Sustainable
Development Goals (SDGs), from Zero Hunger (SDG 2) to Water
Stress (SDG 6), if IWW estimates continue to convey an illusion of
accuracy.

The extent of uncertainties in IWW estimates
The estimation of IWW via large-scale models generally follows
the relationship between crop yields and water requirement
outlined by agronomists and irrigation engineers in the
1950–1960s. In their most simplified form, simulations require
data on the extent of irrigation, crop evapotranspiration, pre-
cipitation, and irrigation efficiency. Spatially explicit IWW esti-
mates are computed in every grid cell at a given time step and
regional, national and global estimates are produced by adding up
values at the grid cell level.

None of the relevant parameters can be characterized with
precise values. Firstly, the extent of irrigated areas is unknown.
There are at least four maps of global irrigated areas based on
official statistics and remote sensing imagery, and the values they
specify differ significantly3. For the same grid cell, the reported
irrigated area can extend over 30 ha or over 8000 ha depending
on the map used4. At the national level, the irrigated area may
vary by a factor of two or more. This also applies to top-ranking
countries in irrigation water consumption such as China and
India, whose irrigated areas range between 43–74 and 15–88Mha
respectively. If we assume an approximately linear relation
between irrigated areas and IWW5, the IWW for China and India
can, respectively, be up to two and six times larger or smaller
depending upon the map selected.

A similar situation occurs with the crop evapotranspiration
ETc, which is calculated from the evapotranspiration of a refer-
ence crop ET0 and a crop-specific coefficient kc. There are
approximately 40 equations available to compute ET0

6 and no
agreement as to which one works best in a given context. Since
ET0 is a modeled variable its value cannot be validated against
any measurement at the scale required, which in turn hinders the
appraisal of its accuracy even under “perfect” input data7. The
crop coefficient kc is also uncertain as it depends on the crop and
its growth stage, but can differ also across individuals and
growing conditions. If basic uncertainties in ET0 and in kc are
simultaneously propagated into the estimation of ETc, the
resulting crop evapotranspiration values may vary considerably.
This is shown in Fig. 1a for Tamarix ramosissima (salt cedar) in
New Mexico (USA), whose potential evapotranspiration in May
might be anywhere between 60 and 800 mm.

At a first approximation, crop irrigation water requirements
can be estimated as the difference between the crop evapo-
transpiration and the effective precipitation. The uncertainty
inherent in rainfall occurrence and its effectiveness already hin-
ders knowing how much irrigation water may be needed to
ensure the development of the crop8. And precipitation datasets
are prone to ambiguities due to sparsity in the gauge network, the
modeling approach, the specific instruments of satellites or the
algorithms used to merge data. Their reported annual precipita-
tion estimates over global land can vary by ±100 mm9.

Finally, irrigation efficiency is the ratio of the water consumed
by the crop to that diverted from the water source to the field.
When no water is wasted, irrigation efficiency equals 1. Irrigation

engineers assume that efficiencies are mainly defined by the
irrigation hardware, with surface, sprinkler and micro-irrigation
displaying non-overlapping, increasingly higher irrigation effi-
ciencies. These categories comply with a technology-oriented
mindset that disconnects irrigation technologies from their social
context while rendering farmers as irrelevant actors in managing
irrigation agriculture. Large-scale models sanction this perspec-
tive and link countries and/or regions with sharp irrigation effi-
ciency point-estimates that are at odds with the variability of
empirically determined efficiencies10. Note how the irrigation
efficiency of 0.38 used for China by large-scale models turns into
a range spanning 0.04–0.77 once basic uncertainties are accoun-
ted for4 (Fig. 1b). This means that IWW estimates for China can
be up to 10 times higher and down to two times lower than
current values by simply using an alternative yet equally rea-
sonable irrigation efficiency value.

The simulation of IWW in large-scale models does not con-
sider these uncertainties. Each model typically runs under one
irrigated area map, one crop evapotranspiration equation, one
precipitation dataset and a fixed irrigation efficiency value per
country or region. Parameters are described with point-estimates
rather than with probability distributions. This means that the
resulting IWW estimates are strongly conditioned by the choices
made during the model design and are unreliable.

We illustrate our point in Fig. 1c, where we compare the IWW
values produced using the approach of large-scale models (point-
estimates) with those produced when uncertainties are propa-
gated with a global uncertainty and sensitivity analysis. We focus
on a grid cell in Uvalde (Texas, USA) given the availability of data
for all parameters and the strong reliance of the region on irri-
gation to produce vegetables and grains. We calculate IWW for
wheat for just a single day in January4. With point-estimates (e.g.,
mean values) characterizing each parameter, IWW equal
8600 m3. With a thorough propagation of uncertainties, IWW
estimates range between 1400 and 40,000 m3, thus spanning more
than one order of magnitude. It is important to stress that this
uncertainty affects only one day and one of the several hundred
thousand grid cells included in large-scale models. Should this
analysis be repeated in all the grid cells and the results added up
to compute yearly national and global IWW estimates, the
resulting uncertainty ranges in IWW are likely to be of the utmost
importance. Simply put, current IWW estimates present us with a
mirage of accuracy.

The way forward
The computation of IWW estimates currently ignores uncer-
tainties. This constitutes a neglect of relevant available evidence
and a dangerous complacency in the achievement of the SDGs
connected with irrigated agriculture. In our example (Fig. 1c), the
use of county-level IWW point-estimates (the red bar) could
grossly misdirect irrigation strategies to manage water stress
(SDG 6.4.2) because its account of the water required by crops
neglects plausible variations and potential extreme values.
Omitting uncertainties can also make water managers issue fixed
water licenses that do not reflect varying water availability and
water requirements’ evolution over time13. By the time the error
is amended, the social–ecological damage may have become
irreversible. We suggest three corrective measures:

First, assume that uncertainties may not disappear. An excess
of artificial certainty prematurely locks in a solution, leaving
decision makers blind to possible, eventually better, policy
alternatives14. IWW models are currently pursuing hyperresolu-
tion representations (the production of estimates at a 1 km
resolution and/or every 1–3 h) to produce more accurate
estimates15. But this path is unlikely to deliver: greater model
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detail tends to produce model indeterminacy when uncertainties
are thoroughly examined16. Increasingly complex models are also
likely to usher in more uncertainties due to error propagation and
the emergence of new phenomena. This is well known by the
climate change community after more than 30 years collecting
data on temperature sensitivity to changes in CO2 atmospheric
concentration, leading to increasing intervals10, 17. We argue that
uncertainties result from the way we produce knowledge and
cannot be banished from science18. Rather than trying to elim-
inate them with more computational power, we might make
better progress by developing methodological and conceptual
tools to expose them, assimilate them and make them actionable
in the real world.

Second, utilize computational power to accurately quantify
uncertainties. Uncertainties should no longer be appraised with
one-at-a-time (OAT) methods and model ensemble designs19.
OAT cannot explore the uncertainty space of multidimensional
models and completely misses the influence of interactions20.
Model ensembles do not sample all model formulations and are
unsystematic21. Rather than sustaining the quest towards ever-
realistic models, computational power should be invested in
stringent global uncertainty and sensitivity analysis. Apart from
Monte-Carlo approaches (Fig. 1c), cost-effective methods such as
cheaper-to-run emulators or convergence monitoring allow a

much better exploration of the uncertain space than OAT or
model ensembles22. The outcome will be IWW estimates whose
range better matches our knowledge gaps. This is a significant
step ahead even if the resulting intervals are too large to be useful
for policy-making: in this case, it will suggest that we should leave
models aside and turn towards tools better suited to guide policies
under irreducible uncertainties, such as deliberative/participative
approaches23, quantitative storytelling24 or robust decision
making25.

Finally, expose assumptions and value-ladenness. By for-
malizing irrigation withdrawals as universal equations guided by
engineering goals, large-scale irrigation models exclude the
values, interests and behaviors of those with the highest stakes in
the issue: farmers and irrigators. For instance, the underlying
premise that irrigation should optimize crop production and
water use is at odds with the goals of traditional irrigators, whose
farming practices result in crop diversity rather than maximum
productivity26. Such differences can amplify the mismatch
between what is modeled and the real-world and can eventually
lead to a scenario where the model, and not the system of interest,
ends up being the object of management. An example is the
Chesapeake Bay Program watershed model, whose output was
used by regulators to claim that their policies improved the water
quality of the main stem of the Bay despite real water monitoring

Fig. 1 Examples of the ambiguities embedded in the calculation of global irrigation water withdrawals4. a Uncertainties in the estimation of the crop
evapotranspiration (ETc). PM and PT stand for the Penman–Monteith and the Priestley–Taylor equation, respectively. Data is retrieved from Nichols et al.11.
We describe the uncertainty in kc with the values reported for salt cedar for May4. b Distribution of the irrigation efficiency of China after propagating
uncertainties. The red, dashed line marks the efficiency value used by some large-scale models12. c Distribution of the water withdrawn to irrigate wheat in
a specific grid cell of the Uvalde County, TX, USA (lon=−99.7083, lat= 29.4583), January 6–7, 2007. All uncertainties in the calculation of IWW are
considered4. The red, vertical line is the estimate produced when the uncertain parameters used in the calculation of IWW are characterized with point
estimates (e.g., mean values).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30731-8 COMMENT

NATURE COMMUNICATIONS |         (2022) 13:3183 | https://doi.org/10.1038/s41467-022-30731-8 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


analysis showing no proof of improvement27. These biases may
be prevented by conducting action-research and involving local
knowledge holders in the modeling process. In Pickering, a
British town hit by several floods between 1999 and 2007, the
participation of stakeholders helped identify upstream storage
processes as a critical element initially overlooked by the
designers of the flood risk model used to guide decision-
making23. The result was a model with a higher legitimacy and
honed to the social–environmental particularities of Pickering.
Local experts with access to national and river basin-scale water
accounts may also help assess the accuracy of IWW at the local
level, thus enhancing the credibility of subsequent estimates.

Large-scale hydrological models should embrace uncertainties
lest they become irrelevant tools for future water management.

Additional information
Supplementary information, including the code to replicate our
results, is available in Puy et al.4 and in https://github.com/
arnaldpuy/ghm_auditing.
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